Incorporating model uncertainty into the evaluation of interventions to reduce microcontaminant loads in rivers

Pau Gimeno, Rafael Marcé, Lluís Bosch, Joaquim Comas, Lluís Corominas

10th MICROPOL & ECOHAZARD CONFERENCE 2017 – Vienna, Austria
- Presentation of the case study
- Development and calibration of Microcontaminant Fate and Transport Model
- Generation of scenarios of uncertainty and interventions
- Evaluation of scenarios
- Take-home messages
CASE STUDY LLOBREGAT

Llobregat river basin
56 WWTP
1,080,000 inhabitants connected

Model substance: anti-inflammatory drug
DICLOFENAC included in WFD “watch list”

Sampling campaign: September 2010
9 points in river
Influent and effluent 2 WWTP
MASS BALANCE (STEADY STATE)

\[L_{\text{down, stretch1}} + L_{\text{eff, WWTP}} = L_{\text{up, stretch2}} \]
Estimation of WWTP influent loads

\[L_{\text{inf}} = \text{Sales} \times \text{Influent loads factor} \times \text{Census population} \]

Degradation in WWTP (A. Joss et al, 2006) → Pseudo 1st order decay reaction

\[L_{\text{effluent}} = L_{\text{inf}} \times \frac{1}{(1 + k_{\text{WWTP}} \times X_{ss} \times \theta_h)} \]

Degradation in river stretches → 1st order decay reaction (≈ GREAT-ER)

\[L_{\text{downstream stretch}} = L_{\text{upstream stretch}} \times e^{-HRT \times k_{\text{river}}} \]

\[HRT = \frac{L_{\text{stretch}}}{v} \]
RESULTS LLOBREGAT

$r^2 = 0.95$

- Sampling points
- WWTP Igualada
- WWTP Manresa

Model prediction (g·d⁻¹)

Measured loads (g·d⁻¹)
GENERATION OF SCENARIOS

12 WWTP interventions

36 scenarios

3 levels of uncertainty

36 distributions of diclofenac concentrations at every stretch

Evaluation at LLO7 (river mouth)

- Reference scenario (calibrated)
- 11 increases in WWTP removal efficiency (k_{WWTP})

- Reference scenario (calibrated)
- Decrease uncertainty in F, k_{WWTP} and k_{river}
- Increase uncertainty in F, k_{WWTP} and k_{river}

20/09/2017
EVALUATION OF SCENARIOS

Upgrades in secondary treatment

Simulated concentrations of diclofenac (ng·l⁻¹) at LLO7

Increase in \(k_{\text{WWTP}} \) (%)

[WWTP removal efficiency (%) - median and 5 - 95 percentiles]

Increased unc
Calibrated pars
Decreased unc

tertiary treatments
Influence of Uncertainty on Selection of Interventions

APPARENT REDUCTION

- **Scenario 1**
 - No overlap → probability of achieving apparent reduction = 100%

NO APPARENT REDUCTION

- **Scenario 2**
 - Overlap → probability of achieving apparent reduction <<< 100%

Probability = (no. of values in Scenario < Percentile 5 of Reference values) / total no. of values in scenario

20/09/2017
EVALUATION OF SCENARIOS

Installation of tertiary treatments

Upgrades in secondary treatment

Probability of apparent reduction (%)

Increase in k_{WWTP} (%) [WWTP removal efficiency (%) - median and 5 - 95 percentiles]

[40 (17-64)] [55 (28-77)] [87 (67-95)] [98 (95-99)]
- Model uncertainty influences the selection of WWTP upgrade interventions to reduce diclofenac loads in rivers.

- Installation of tertiary treatments results in apparent reductions in diclofenac concentrations, *regardless of uncertainty*

- Upgrades in secondary treatments result in apparent reductions in diclofenac concentration, *depending on uncertainty*

- Further research is needed to reduce uncertainties in human consumption and excretion of PhACs, in the removal of PhACs in sewers and in the WWTP and river degradation constants.
Incorporating model uncertainty into the evaluation of interventions to reduce microcontaminant loads in rivers

P. Gimeno a, R. Marcé a, Ll. Bosch a, J. Comas a,b, Ll. Corominas a,*

a Catalan Institute for Water Research, Emili Grahit 101, Scientific and Technological Park of the University of Girona, 17003 Girona, Spain
b LEQUIA, Institute of the Environment, University of Girona, Campus Montilivi, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Catalonia, Spain
ACKNOWLEDGEMENTS

- “TreatRec”: Interdisciplinary concepts for municipal wastewater treatment and resource recovery. Tackling future challenges Marie Skłodowska-Curie Actions, Innovative Training Networks, European Industrial Doctorate (MSCA-ITN-2014-EID), Grant agreement no: 642904.

- **Catalan Water Agency** (ACA)

- **Joana Aldekoa** and **Félix Francés** (UPV-SCARCE Project)

- **Vicenç Acuña, Ignasi Aymerich** and **Mira Petrovic** (ICRA)

- **Victoria Osorio** and **Sandra Pérez** (IDA EA-CSIC)

- **Sara Gabarrón** (CWP)

- **Jo Severyns** and **Marjoleine Weemaes** (Aquafin)
Many thanks for your attention

Pau Gimeno

ICRA – Institut Català de Recerca de l’Aigua
Parc científic i Tecnològic de la Universitat de Girona
Edifici H₂O
Emili Grahit, 101
17003 Girona
Spain
E-mail: pgimeno@icra.cat